QUASI-ONE-DIMENSIONAL SOLUTIONS OF THE EQUATIONS
OF A HIGH-CURRENT ELECTRON BEAM

V. N. Danilov UDC 533.95

On the basis of one~dimensional solutions of the equations of an axisymmetric, double~flow
beam, an adiabatic approximation is constructed that makes it possible to describe the effect
of a slightly inhomogeneous magnetic field on a stationary, quasineutral beam. Tubular and
stratified beam configurations, confined near the axis, at currents of the order of the criti-
cal current and substantially in excess of the critical current, are considered.

Equilibrium states of a high-current, relativistic beam of electrons [1} in a filled plasma tube have
been studied in [2]. Within the framework of the adiabatic approximation we consider here the problems of
control by the parameters of a stationary axisymmetric beam in a tube with the aid of an external, slightly
inhomogeneous magnetic field. This field makes it possible effectively to change the relationship between
velocity components of the electrons, the beam radius, etc. Double-flow beams, being more regulated so far
as velocities are concerned, are of interest for the further transformation of energy. The adiabatic ap-
proximation for a double-flow beam can be constructed from a solution that is one-dimensional with respect
to the radius r, the constants of this solution being considered as quasiconstants, depending slightly on the
longitudinal coordinate z, with the exception of integrals of the motion: the electron energy &, the azi-
muthal component Py of the generalized momentum, the adiabatic invariant w, and the current J. A quasi-
one-dimensional double-flow beam consists of two subcurrents of electrons, which differ from each other
only in the sign of the radial component of the 4 -velocity,

Up = (8 — 1 — 1% — u ), Usy = Ao + Pogy 0.1)

and it is bounded by the surfaces r, r_ on which these subcurrents become converted from one type to the
other [3]:

+ +
r=ryg, u, =0, w=j[ur|dr,‘ J=2n5pu,rdr (0.2)

Here (O, Ay, A,) is the vector potential of the self-consistent field (O, Hy, H,)
Hy=—r1d,, H,=r14,, H*=r*H+ H} 0.3)
r (r—lAO,r),r = 2npuy, 1t (r4; e = 2npu,, 1o | ur‘ =2I

the potential of the electric field is omitted, in keeping with the neutrality of the beam; p is the scalar elec-
tron density; the quasiconstant I has the sense of a rotary current formed by oscillations of the electrons
that are transverse to the beam; an index after a comma denotes a derivative with respect to the corre-
sponding coordinate; the azimuthal components are defined as covariant; and the physical constants e, m,

¢ are omitted, which corresponds to departures from the usual notation as indicated by the arrows:
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Pime— P, &jmc*— &, eAd/me*— A4 0.4)

” af /3 eH mc?— H, 2e*p/mct—p, — 2eJ /mc*—J
, /‘/Zi . The double~flow quality of a beam requires identity of the
) - /,[z,p 101151 201 251 electrons with respect to the constants Py and w and is achieved
- by injection of a very narrow beam with identical electron ve-
// ! \\ locities onto a diaphragm or, for instance, under the following
! /ai\ conditions: the cathode in the vacuum part of the accelerator
fy lies on the magnetic surface Ay = —Py; the region of the single-
4 flow stream at the cathode is surrounded by the outermost tra~
/ \ ) jectory and adjoins the double-flow beam on it, the latter being
4 / ¢ g everywhere in a state where conditions are adiabatic and pene-

trating smoothly to the diaphragm at a small angle with the
boundary. Violation of these conditions results in velocity dis-
persion. In this case the double-flow beam considered below will correspond to an actual one as a model
that takes account of all qualitative properties with the exception of the detailed structure of the distribu~
tion of the magnetic self-field along the radius.

Fig. 1

1. Tubular Beam

The system of equations (0.1), (0.3) can be reduced to two by simple substitutions

Voo — U ,o2 = €20/ 2u + et sin® Y, u = (1 — v
(b V%), = ®PsinpeosP, r=Re=, e?BnlR=x% .1
U, + irtug s=wveld, u, = 4-nu, x= (& — 1), =V 1

For small ¢ the beam is confined close to the quasicylinder R(z), and the solution can be expanded in
powers of €, converting to the short coordinate s = r—R

s=eR(0+1Y,0%e), 0=+ ¢ + &0’ 1.2)

Integrating (1.1) with an accuracy up to &%, we easily obtain

5 = 0/8, 8= [(t— 1) (s — 1) (i — )% t.3)

rH, + iH a) ¥t=D (ecos ) expi (P 8) -+ using -+ iei¥s ) (6,)72 0, =2 (5,  (us’ —w)

Y= Oy Fey, ) =Dv? tgd=8/D
Here &, D, u are quasiconstants and uy, uy, uy are real roots of the cubic equation, indicated in Fig. 1,

=) W—yn=D<p, u<I<wu<I<uy d.4)

Finally, the solution is expressed in terms of elliptic integrals of the first F, the second E, and the
third kind 1I:
6" = 2 (uy — uy) e [y F (@, k) — (uy — uy) E (9, k)] [ (1.5)
u=1uy + (Ug—uy) sin? @, 5= (uy — )/ (uy — uy)
P = D Wn, k, @) O(m, k, @)
= Vu_a:—u—l{ 1 —uy 1+ w } »
ny = — (g — ) /(1 — w), ny= (ug —wa)/(1 + )
w = [ udo’ = %y (a5 — ) {3 — (s — 1) (i — ) F (9, ) —

]

— 207 (uy — uy) E (@, k) -+ Yy (U — 1) (s — t4y) sin 2 (+ — k% sin? g)/2} [3/2

/2

The functions marked with a dash are reckoned from the line of maximum u = u,, which is situated
almost at the center of the beam.

The upper sign corresponds to the upper half of the beam, while the lower sign corresponds to the
lower half. The two-valued representation separates the sheets of the required function s(v), and this
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enables one to avoid nonuniformity of the asymptotic representation in
the neighborhood of the branch point u = uy. Denoting values of func-
tions of fixed sign on the boundaries (0.2) by the index zero, we can

Z | LI /7/// write
////// se=chdot .., do=80y R by = Dy’ + op” (1.6)

D=k il Po = are sin [— uy/(uy — u)l’s, = D/cos B,
/ /%/7/;%‘7’”[”” —_ -%- =2 2005 ®sin —%— + wg sin @ sin '

4

= 28Ruw,’, v = 2 (hy’ — 9o}, ¥ Bo) = — 7 (— )
A [ﬂ/ / / / ] The values of oy, ¥y, W' are obtained by replacing ¢ with ¢, in
4 25 R % expressions (1.5). The signs of u, D, ¢; are the same and opposite to
the sign of vy, the "angle" &, varies in the range — /2, v/2. During
Fig. 2 passage from the lower to the upper boundary the moduli of the vectors

rtug, u,), (r? Hy, H,) remain almost the same, and in the (z, r, §)
plane these vectors turn through the angles 2y and v, respectively. The solution obtained above is deter-
mined by two parameters: p, D or ny, 4. In Fig. 2 the dependence of the angle y through which the mag-
netic field turns on the parameters ny, 4 is represented. In particular, Figs.1 and 2 enable one to calcu-
late the state of a high-current beam, as determined below (2.4).

Values of the parameters n;, ny are confined to the strip

006 —n <1, —m/(l+n)=N<ny <o a.7)
0 —n <05, V<< —m/(1+2m)=N,

At the boundaries of this strip the solution has the following asymptotic forms.

The case n, ~ Ny corresponds to a very intense external field

Up e — Uy = n/(2—n)=|siny), n= —m (1.8)
Yo =By, Qo /b, TREO0, uy=pi>1

The case ny ¥ Ny corresponds to a small transverse velocity (cold beam)

o' =1, [P (sint/cosTo— 1), uw=|p|s, 1.9)
w=2up /|| = (Tpcos ) — Ty 0<<T< Y,
tg o= 2p2|8,], Je(Rcos D)t =71
P2 ] = Tor @' = 2a0|p|(eR|Y ) = tgTp/To— 1
D=2 pfw(eRey®)™ = 107 [(1 + Yo cos™ 1g) — ¥/3 tg Ty

For small “z a cold beam is described more simply

Uy pl— D2, ¢ = (up — Ypat®)t, u =03, (1.10)
ty = 2ug'h, wy' =1/, oy = Ysu'h v am— 20,

The case n, — « corresponds to small D?. In the region u?< 1 the solution has the form

o —1, vy pi4 D2t — 1)), w1
K=y (W 1), Bo= —7/2= k)2 a.11)
5o’ =V2F — 2B)[3F, vmin = (1 — iy
wy =15V 2 1(2u> + 1) F — 4u’E] ‘1»2 — s |nl

In this beam the transverse velocity is large (hot beam), but the longitudinal velocity is still consid-
erable. In contrast to the preceding, for “2 > 1 the solution corresponds to a rotation of the velocity
through nearly 180° and a small rotation of the magnetic field:

uy~—1, uy=1-—-1,D* (p’ — )7, ug =l
Go' = 2 (1 + 2k [WF — (1 4 p?) E1[72 1.12)
wy =y (1 - )k [(204 4 1) F — 202 (2 + DE] [FA— 25 1),
— Dy = D" = {(2p2 — 27 [+ (02— )7 4 (202 — 277 — 2/ |37,
k22 (4 4 p?)
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Fig. 3

In this drifting beam the longitudinal velocity at the axis is small. The current in the upper half of the
beam almost compensates the current in the lower half, but, despite the fact that the fotal current is small,
the drop in magnetic pressure toward the center of the beam is large. The immediate neighborhood of the
singular point y =1, D = 0, in which reflection or a branching of the beam with a bend in the axis can occur,
is reached because of the conservation of w in a very strong external field.

The solution for a wide beam could be constructed numerically, using the following local solution of
the original equations (1.1):

6=06,+3, v=v,+0V, r=~Re, e=1
¢ = 0, 1P, sin7 — €,0,% (1 — c0s 7) — 0,0,7% (v — sin 1)
v =1 —v, — 0. (5,)% o= D%,"% 4 v,sin?y,,
O = Vs [2(1 - vn) T exp o, (1.13)
V' fomg = 6" im0 =0, Vo fimp=tp, Pp=1[2(1 —v,)]"

It is not difficult to supplement (1.13) with the succeeding term of the expansion in the small dashed
increments. Then the original equations can be integrated for a wide beam with large, uniform steps in ¢,
n=1,2,..., right up to the boundaries, on which the essential singularities of the problem are located.

The asymptotic representation (1.13) removes these singularities, and does so uniformly with respect
to all the parameters. For small wy the expansion is made according to powers of 7.

2. Adiabatic Equations

The equations for the quasiconstants €, u, D, @, R follow from the conservation of w and J, defined in
{1.6), the absence of Hy inside the beam, the continuity of Ag on the inner boundary r_, and the presence
of an axial field B(z) outside the beam:

C(@—7/2)y=»~rcosp_, h=0, /28y, R ==— Ru/2Py
wie=C= (14 es)/R' -+ (1 —A)siny_, B=—2PyBx?
Coos (@ -+ 7/2) = B (1 +e55') B— (1 - A)sin, (2.1)

Of interest are an electron current in which the velocities have maximum order [cold beam (1.9),
(1.10)], and also a current of identical oscillators with large energy of the transverse oscillations [hot
beam (1.11), (1.12)]. Solutions of the adiabatic equations, constructed below, apply mainly to these states.

In a weak external field (3~ 1) the beam is cold* (u® ~ uy ~ g5). From (1.6), (1.10), (2.1) it follows
that

* The adiabatic approximation is applicable under the condition u, > gy/L >1, where L is the scale of the
periodicity of B. Accordingly u, is bounded from below.
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5 BR’ = sin @ cos? @ {1 — [1 + Bcos 20 sin 2 D cos™* D]/}

, C = (R'B — sin ®)/cos 20 = — J (x sin 200)*
&' = 2&| Py [ (15w)~h = | R’ (C sin Q)3 | s 2.2)
3 \\ '[/ J/x @ = 3/ (/5ow) 1| 2Py h @y = &4 | B’ (€ sin D)3|
. \Y _
\\\\ / Negative values of g correspond to a change in sigh of the ex~
{ 12, ternal field B on the way from the cathode and a solution in the region
! ,\ -3 > sin*® with the opposite sign in front of the radical in R'. In Fig.
p 3 3 the solid curves depict the variation of the dimensionless radius R'
a6 a4 28 @ of the beam with the external field parameter g, while the dashed
Fig. 4 curves depict that of the angle &. Monotonic variation of a positive
g B results in a homogeneous beam. The dependence of parameters of
the homogeneous state on the "winding" angle of the trajectory is de-
L4 . picted in Fig. 4 and is determined by the expressions
"=
/”L— - / R’ =—ctg2 Djcos®, J/u=sin Dtg 2D (2.3)
/ / In the case of strong fields (3~ £~ and large currents (J ~
! Nz we™l) it follows from (1.6) and (2.1) that, with an accuracy to &,
a8 D =1/2, cost = Ypa [(1 + 4o — 1], aB = (J /%) 2.4)
; / R = £ (cos ¥/B)% &= (w|w|)¥s(&| Po| )™
Ay f With a decrease in B the beam becomes homogeneous, with
a4 / / _ parameters determined by the graphs of Fig. 5 and the relations
// ~ 2D~ 40/, R=|2P|/], C=FJ/x 2.5)
J V The quantity —27Py is equal to the magnetic flux surrounding the
a7 14 1%! emitting portion of the cathode. Therefore the sign of the quantity
Fig. 5 R'in (2.4) must be the same as the sign of the field at the cathode.

The state (2.5) is determined by the equilibrium of the magnetic pres-
sure of the internal axial and the external azimuthal fields. The drop from the boundary of the beam to the
center is compensated by the density of the transverse momentum flux, which is equal to the energy density
of the transverse oscillations

H? =~ 522 (6 Ry == 1/, J4Pg, AH? = ug® (eR)™ \ (2.6)

For currents of the order of the critical current (J ~ %) the magnetic field either rotates hardly atall

WC=—Tjn, C=-48" R=(—2Py/Byr,O=17/2 2.7)
or it rotates through an angle of the order + 180°
vy=~-=+mn 0o=~+n/2, C=—RB/%, B=(2P/B): (2.8)

The latter case corresponds to the asymptotic form (1.11). The external field must change sign on
the way from the cathode. The azimuthal currents are large, and the magnetic field is mainly axial. Fig-
ure 6 shows the evolution of the beam in its dependence on B':

Y, IBluw?=B =| nlw', o= 2an / w =0y [ wy (2.9)

In the caée (2.7) the equation v = 0 results in the asymptotic form for a hot beam (1.8), (1.12). The
evolution of a drifting beam (1.12) is shown in Fig. 7, where gy', B' are defined by (2.9)

2(u/J)| Pyl D| = D' =D’ (B'Y™: (2.10)
This beam does not exist for a field B' less than /4. Near this point the asymptotic form (1.12) and
the adiabatic conditions break down. The third solution of the equation y =0
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A1
475 2.11)

s —d
25

r/
/S< 224, departs only slightly from the asymptotic form for a cold beam

U@ =1~z (F)|sin |z
ug = (@?— 2z 4 2) (2* — 1), wi= %3 - 22) (2 —1)7

P /—,,7 sin%, =@ —1) @@ —20+2) (z+ )2, 1<z 15

223 (1.9). Figure 8 shows the functions
0 a5 1z 8 " 2| wp. 1
Ut gy gt P o 2a2)
Fig. 6 (1 2w T
2y (] J)l| Pyl e wh =2 gy’ =y [
¢ : describing the evolution of a beam in conformity with 2.7), (1.9).
\ / 3. Stratified Beam
6;// 4 A stratified beam can be constructed from narrow tubular
2 - a—— beams (in the terminology [2] of current filaments), if the param-
\ # // eters of the beam described above are considered to depend on
\ / the number m of the layer and the field strength and the magnetic
~\~ ~ a potential match on the boundary of neighboring layers
S/ - - @30)
Hz+_Hz_=Hz,m1 A9+"A9—+Hz+(r++1/2d)d=A6.m °
/ H,* = (/r) {Ccos (D= 1/2) + (1 + A) sin (D ;)
[/ % Hy —Hy =Him, " =1t d=rp=r"(m4+1)—r(m) 6.2)
95 LS 8

Equations (3.1), together with the conservation of J(m),
Fig. 7 w(m) (1.6) and conditions of type (2.1) on the outer layers
m=1, H =0, 1, H,r®=4", m=M, H} =B 3.3)
constitute a boundary problem for the parameters R, &, u, D, ¢ and the gap d between the layers. Below
we consider beams with a large number of layers M and a smooth dependence of the parameters on the layer
number, as is reflected in (3.2). Then Egs. (3.2) take the form

Hy /%= Csin (@ — 1/2) — heos (@ — ¢,) = — §

Ry =2ay+d, S= | Jixdm, C=p/e
i

8.4)
For a drifting beam (1.12) Egs. (3.1), with an accuracy to €, become
Vv2RcosD =hd — Py pni%, v= sign C, —h=Ccos®
R(h/R);, — 2(cg't — v) cos @ -+ 2hvcos D = yCsin ® (3.5)

In the case Py, m/R «1 Egs. (3.5) become expressions for the small angles y, r/2—&. This is a
homogeneous state. The required external field is determined from (3.3) and is proportional to Pg,m(M).
For the densest packing of the layers (d = 0) the following current distribution follows from (1.6), (3.4),
and the relation ;%' ~ 1 (see Fig. 6):

S=AM)IR/R )
J=A)[RR ()] w (3.6)

The total current »S(M) can be very large.

For a beam with cold layers (1.9), (1.10) small values of y are necessary, and Eqs. (3.1) take the
form ,
(Rsin® — P),, + hd = 2R (b, cos ® + &3, sin D)
R(h/R)m = 2 (uoy — Po)cos @ 4 (2e5y’ + C7) sin @ 3.7)
—h=Ccos® +sin®@=~RH /%, P=Py/n
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16 If the axial field inside or outside the field is large, the terms

%T’ ‘ M's €0y’ can be neglected:

e

a8 th’R, B(P'R/R)_R—‘!—S,pS:O (3.8)
o

The function S(P) is determined by conditions at the cathode.

z ¥ 6 4’ Elementary cathodes P = const must be placed at various levels of the
magnetic flux. As a whole, the cathode is intersected by the magnetic
Fig. 8 lines of force. An example of a solution

S = {k, [P— PA)}, P =1k, R — R2(1)+ 2R?In R (M)/R (1)] — /,R*B/%, k, = const 3.9)

shows that the current S can be large for a large field at the cathode. With a decrease in the external
field the beam broadens somewhat.

In a beam with opposed azimuthal currents the quantities u, o, ®, v, ¥'s Ay, Hz, and Py change sign
from one layer to the next. A conversion to the representation

p— (=)™, &> (=)™ D, ..., Py/x—> (—1)" P 8.10)
results in quantities with a constant sign and a change in signs in front of H,, Ap in Egs. 3.1):
YoR(H, [#)ym + CeosDcosy/2 4 (1 +A)sin® =
= — no, sin Msiny/2, 2x (Rsin® — P) = —dH 'R (3.11)
For a cold, rarefied (gy < d) beam the complete system of equations is
Rh(h/R)pm+ SS,m =2hsin®, AR, + 2Rsin ® = 2P
tg® = 2xh/J, tgy/2=h/S, +H,*R~xh @.12)
h(1)=2P/R —sin®, h(M)=~ (— 1M BR/x —sin®
Two solutions are given below that correspond to a powerful, localized beam under the conditions

S(M)=M>1, | BP(M)|> 2-3n (3.13)

The first condition ensures the compensation of the centrifugal forces by the pinch forces and equi-
librium. Violation of the second condition results in a rapid growth in the radius of the outer layers. With-
in the scope of (3.13) the angle & is close to 7/2

S = (Tym), P=P,, R=P, (1 — ke
hP, = Re (U — (LIn/2k) In(R/R (M))], R(1) = P, (1. — k)
m—1={raf =1 —r)+ A, U=200 -k~
0

=~ (II,/2k) In (R (M)/R (1)} — PBx'exp — 2f (M) (3.14)
Asterisks denote quantities that are chosen as constants. In the case
Cf (M) > 2and| B~ (2 —3)n/ Py
M=l f (M) — (1 — k), S (M) =T,V (M)
1—k = [(I1,/8) In(11,/8)] "= <1 (3.15)

In the second solution the currents in the various layers are identical:

Jin= 1+ 0, R=P,(1—ke™), P=P>P,
hP, = RUE (0, sinwyf + cos 0gf), my=h, (3.16)

For small w4 and minimum B we obtain

U~201—k2 S(M)=M =Uo, 2expn/20,
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Here, as in (3.14), the modulus of the axial field, starting with the already large value U/ P, inside
the beam, grows exponentially, but farther on a steep drop almost to zero at the outer layer occurs. It is
possible that the self-field of such a beam is able to provide the magnetic flux (=1)™+! 2, Py whichis small,
but of variable sign, in the region outside the cathode, necessary for the formation of opposed azimuthal
currents.

We can now put some of the results in concrete form, as estimates of the dimensional quantities in
(0.4). Suppose that an annular knife edge of radius Rk, directed along a magnetic line of force, serves as
the cathode of the system in [1]

Py = — B R,%/2c = const

Suppose the reverse currents have dissipated and the self-field of the beam is commensurable with
or exceeds the external field B.

For large external fields at the cathode By ~ 1.7 (»/a) kOe - cm and large currents J ~ w(Rg /) 8.5
kA the beam assumes a tubular form with thickness g << Rk. If the beam is extracted smoothly from the
external field, the beam does not change its structure very much, equilibrating itself with its self-fields
{internal axial and external azimuthal) that are commensurable with Bi. On the average the trajectories
wind about a cylinder of radius c2P9/eJ ~ Rg under an angle of 45°, and the density of the oscillator energy
remains commensurate with that of the translational and rotational energies. By decreasing the current
to J ~ 8.5 kA one can obtain the drift beam (1.12) (Fig. 6), in which practically all the linear energy den-
sity ~«}(R/a)J/em is due to the transverse oscillators and is commensurable with the energy density of a
high-current beam. Such a beam is of interest as a maximally dense current of strongly nonlinear oscilla-
tors for obtaining radiation. However, a drifting beam breaks down with fields that are substantially less
than 1.7 («/a) kOe -cm. Passage through the diaphragm must result in an increase in the oscillator fraction
of the energy. A further increase in the external field in low-current beams can adiabatically convert
translational and rotational energy into oscillator energy (Fig. 5).

In a weak external field By ~ 1.7 (#/Ry) kOe - cm the beam will be a narrow tube with small oscillator
energy if it penetrates the diaphragm at a small angle to the external field. Upon extraction from the ex-
ternal field the radius of a cold beam increases markedly (Figs. 3 and 4). In a cold beam the centrifugal
forces exert a substantial counteraction to pinch compression. Therefore the azimuthal external field is
markedly larger than the axial internal field, there is an increase in the azimuthal currents, and, associ-
ated with this, the increase in the centrifugal forces results in a sharp increase in the limiting currents
(Fig. 4). If a concentric tubular beam with opposed azimuthal currents is formed, then for maximum cen-
trifugal forces the axial fields will be almost compensated. The external field required for localization of
a stratified beam within a radius R was found to be not large, 1.7 (1/R) kQe - cm, and the overall current
M 8.5 kA is proportional to the number of layers M. Here a series of concentric cathodes, involving al-
ternating magnetic fluxes of the order 27Rn 1.7 kOe - cm, is necessary. The estimates made of the re-
quired external field at the cathode Bk are greatly exaggerated, since they do not take account of the axial
self-field, which, in the beams under consideration, is directed the same way as the external field B, and
substantially increases the totfal field at the cathode.

High currents are important for the realization of the states described above. A decrease in the
relativistic factor « and a proportional change in the currents do not alter the structure of the beam.

The author thanks A. N. Ievlev for much help with the calculations.
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